Results and Publications

Since its inception the Bluefield Project has made remarkable progress. We have advanced our research priorities, generated significant core research reagents and established a highly productive working infrastructure. Bluefield investigators have leveraged their results into federally financed research grants, thus increasing the resources supporting frontotemporal dementia research. Maximizing both private and public support for frontotemporal dementia research is a central goal of the Bluefield Project.

To date, publications whose work was supported by Bluefield funding include:

2023

  • Jiskoot LC et al. The Benson Complex Figure Test detects deficits in visuoconstruction and visual memory in symptomatic familial frontotemporal dementia: A GENFI study. J Neurol Sci. 2023 Mar 15;446:120590. 

  • Samra K et al. Motor symptoms in genetic frontotemporal dementia: developing a new module for clinical rating scales. J Neurol. 2023 Mar;270(3):1466-1477. 

  • Marsan E et al. Astroglial toxicity promotes synaptic degeneration in the thalamocortical circuit in frontotemporal dementia with GRN mutations. J Clin Invest. 2023 Mar 15;133(6):e164919

  • Premi E et al. Early neurotransmitters changes in prodromal frontotemporal dementia: A GENFI study. Neurobiol Dis. 2023 Mar 8;179:106068. 

  • Smith DM et al. Targeting nonsense-mediated RNA decay does not increase progranulin levels in the Grn R493X mouse model of frontotemporal dementia. PLoS One. 2023 Mar 9;18(3):e0282822. 

  • Kashyap SN et al. Preclinical Interventions in Mouse Models of Frontotemporal Dementia Due to Progranulin Mutations. Neurotherapeutics. 2023 Feb 13. 

  • Samra K et al. Neuropsychiatric symptoms in genetic frontotemporal dementia: developing a new module for Clinical Rating Scales. J Neurol Neurosurg Psychiatry. 2023 Jan 10:jnnp-2022-330152. 

2022

  • Woollacott IOC et al. CSF glial markers are elevated in a subset of patients with genetic frontotemporal dementia. Ann Clin Transl Neurol. 2022 Nov;9(11):1764-1777. 
  • Zetterberg H et al. The role of neurofilament light in genetic frontotemporal lobar degeneration. Brain Commun. 2022 Nov 26;5(1):fcac310. 
  • Poos JM et al. Longitudinal Brain Atrophy Rates in Presymptomatic Carriers of Genetic Frontotemporal Dementia. Neurology. 2022 Oct 26;99(24):e2661–71. 
  • Staffaroni AM et al. Temporal order of clinical and biomarker changes in familial frontotemporal dementia. Nat Med. 2022 Oct;28(10):2194-2206. 
  • Boland S et al. Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis. Nat Commun. 2022 Oct 7;13(1):5924. 
  • van der Ende E et al. Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study. J Neuroinflammation. 2022 Sep 5;19(1):217.
  • Sogorb-Esteve A et al. Differential impairment of cerebrospinal fluid synaptic biomarkers in the genetic forms of frontotemporal dementia. Alzheimers Res Ther. 2022 Aug 31;14(1):118. 
  • Gerrits E et al. Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat Neurosci. 2022 Aug;25(8):1034-1048. 
  • Hashimoto K et al. Neuroimmune dysfunction in frontotemporal dementia: Insights from progranulin and C9orf72 deficiency. Curr Opin Neurobiol. 2022 Jul 2;76:102599. 
  • Nelson A et al. The CBI-R detects early behavioural impairment in genetic frontotemporal dementia. Ann Clin Transl Neurol. 2022 May;9(5):644-658. 
  • Boeve BF et al. Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 2022 Mar;21(3):258-272.
  • Foster PH et al. Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex. 2022 Feb 9;150:12-28.
  • Devireddy S, and Ferguson SM. Efficient progranulin exit from the ER requires its interaction with prosaposin, a Surf4 cargo. J Cell Biol. 2022 Feb 7;221(2):e202104044.
  • Zhang T et al. Differential regulation of progranulin derived granulin peptides. Mol Neurodegener. 2022 Feb 4;17(1):15. 
  • Peakman G et al. Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort. J Neurol Neurosurg Psychiatry. 2022 Feb;93(2):158-168. 
  • Poos JM et al. Cognitive composites for genetic frontotemporal dementia: GENFI-Cog. Alzheimers Res Ther. 2022 Jan 19;14(1):10.
  • Wilke C et al. Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum NfL and pNfH: A Longitudinal Multicentre Study. Ann Neurol. 2022 Jan;91(1):33-47.
  • Du H et al. Regulation of lysosomal trafficking of progranulin by sortilin and prosaposin. Brain Commun. 2022 Jan 4;4(1):fcab310.

2021

  • van der Ende, EL et al. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia, Brain, 2021;, awab382, https://doi.org/10.1093/brain/awab382
  • Bergström, S et al. A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Mol Neurodegeneration 16, 79 (2021). https://doi.org/10.1186/s13024-021-00499-4
  • Ljubenkov, PA et al. Effect of the Histone Deacetylase Inhibitor FRM-0334 on Progranulin Levels in Patients With Progranulin Gene Haploinsufficiency: A Randomized Clinical Trial. JAMA Netw Open. 2021;4(9):e2125584
  • Öijerstedt L et al. Practice effects in genetic frontotemporal dementia and at-risk individuals: a GENFI study. J Neurol Neurosurg Psychiatry. 2021 Aug 18:jnnp-2021-327005. 
  • Root J et al. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis. 2021 Jul;154:105360
  • Rojas, JC et al. Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration. Neurology 2021.10.1212
  • Poos JM et al. Impairment of episodic memory in genetic frontotemporal dementia: A GENFI study. Alzheimers Dement (Amst). 2021 May 13;13(1):e12185. 
  • Feng T et al. Physiological and pathological functions of TMEM106B: a gene associated with brain aging and multiple brain disorders. Acta Neuropathol. 2021 Jan 1. 
  • Swift IJ et al. Fluid biomarkers in frontotemporal dementia: past, present and future. J Neurol Neurosurg Psychiatry. 2021 Feb;92(2):204-215.
  • Panman JL et al. Modelling the cascade of biomarker changes in GRN-related frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2021 Jan 15:jnnp-2020-323541. 

2020

  • Borrego-Écija S et al. Disease-related cortical thinning in presymptomatic granulin mutation carriers. Neuroimage Clin. 2020 Dec 29;29:102540. 
  • Huang M et al. Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations. acta neuropathol commun. 2020 8, 163.
  • Russell LL et al. Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex. 2020 Dec;133:384-398. 

  • Häkkinen S et al. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis. 2020 Nov;145:105063. 

  • Feng T et al. Loss of TMEM106B and PGRN leads to severe lysosomal abnormalities and neurodegeneration in mice. EMBO Rep. 2020 Oct 5;21(10):e50219. 

  • Arrant AE et al. Elevated levels of extracellular vesicles in progranulin-deficient mice and FTD-GRN Patients. Ann Clin Transl Neurol. 2020 Nov 16;7(12):2433–49. 

  • Zhou X et al. Loss of TMEM106B leads to myelination deficits: implications for frontotemporal dementia treatment strategies. Brain 2020;143(6):1905–19.
  • Olney NT et al. Clinical and volumetric changes with increasing functional impairment in familial frontotemporal lobar degeneration. Alzheimers Dement 2020;16:49–59.
  • Pasquini L et al. Salience Network Atrophy Links Neuron Type-Specific Pathobiology to Loss of Empathy in Frontotemporal Dementia. Cerebral Cortex 2020;1225:59. 
  • van der Ende EL et al. Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. Journal of Neurology, Neurosurgery & Psychiatry 2020;91(6):612–21. 
  • Ramos EM et al. Genetic screening of a large series of North American sporadic and familial frontotemporal dementia cases. Alzheimers Dement 2020;16(1):118–30. 
  • Elia LP et al. Approaches to develop therapeutics to treat frontotemporal dementia. Neuropharmacology. 2020 Apr;166:107948. 
  • Miyagawa T et al. Utility of the global CDR® plus NACC FTLD rating and development of scoring rules: Data from the ARTFL/LEFFTDS Consortium. Alzheimers Dement 2020;16(1):106–17. 
  • Boeve B et al. The longitudinal evaluation of familial frontotemporal dementia subjects protocol: Framework and methodology. Alzheimers Dement 2020;16:22–36.
  • Staffaroni AM et al. Assessment of executive function declines in presymptomatic and mildly symptomatic familial frontotemporal dementia: NIH-EXAMINER as a potential clinical trial endpoint. Alzheimers Dement 2020;16:11–21.
  • Boxer AL et al. New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures. Alzheimers Dement 2020;16:131–43. 
  • Narendra DP et al. Coupling APEX labeling to imaging mass spectrometry of single organelles reveals heterogeneity in lysosomal protein turnover. JCB 2020;219(1):436. 

2019

  • Arrant AE et al. Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations. Acta Neuropathol Commun 2019;7(1):218–17. 

  • van der Ende EL et al. Novel CSF biomarkers in genetic frontotemporal dementia identified by proteomics. Ann Clin Transl Neurol 2019;6(4):698–707. 

  • Moore KM et al. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurol 2019:145-156.
  • Roczniak-Ferguson A & Ferguson SM. Pleiotropic requirements for human TDP-43 in the regulation of cell and organelle homeostasis. Life Sci Alliance 2019;2(5):e201900358.
  • Kornak J et al. Nonlinear Z-score modeling for improved detection of cognitive abnormality. Alzheimers Dement 2019;11:797–808. 

  • Chen Q et al. Tracking white matter degeneration in asymptomatic and symptomatic MAPT mutation carriers. Neurobiol Aging 2019;83:54–62.

  • Ljubenkov PA et al. Peripheral Innate Immune Activation Correlates With Disease Severity in GRN Haploinsufficiency. Front Neur 2019;10:1004. 

  • Tavares T. P. et al. Ventricular volume expansion in presymptomatic genetic frontotemporal dementia. Neurology (2019).

  • Moreno-Yruela C. et al. Kinetic Tuning of HDAC Inhibitors Affords Potent Inducers of Progranulin Expression. ACS Chem Neurosci (2019).

  • Butler V. J. et al. Age- and stress-associated C. elegans granulins impair lysosomal function and induce a compensatory HLH-30/TFEB transcriptional response. PLoS Genet 2019;15(8):e1008295.

  • Lee, S. E. et al. Thalamo-cortical network hyperconnectivity in preclinical progranulin mutation carriers. Neuroimage Clin 22, 101751 (2019).

  • Jiskoot, L. C. et al. Longitudinal multimodal MRI as prognostic and diagnostic biomarker in presymptomatic familial frontotemporal dementia. Brain 142, 193–208 (2019).

  • Pottier, C. et al. Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathol 1–21 (2019). 

  • Butler, V. J. et al. Progranulin Stimulates the in vitro Maturation of pro-Cathepsin D at Acidic pH. J Mol Biol (2019). 
  • Elia, L. P. et al. Genetic Regulation of Neuronal Progranulin Reveals a Critical Role for the Autophagy-Lysosome Pathway. J Neurosci 3498–17 (2019). 

2018

  • Xian, X. et al. Reversal of ApoE4-induced recycling block as a novel prevention approach for Alzheimer's disease. eLife 7, 7779 (2018).

  • Arrant, A. E. et al. Reduction of microglial progranulin does not exacerbate pathology or behavioral deficits in neuronal progranulin-insufficient mice. Neurobiology of Disease 124, 152–162 (2018).

  • Zetterberg, H., et al. Fluid biomarkers for frontotemporal dementias. Neuropathol Appl Neurobiol (2018).

  • Hofmann, J. W. et al. RNA Binding Proteins and the Pathogenesis of Frontotemporal Lobar Degeneration. Annu Rev Pathol 14, 421059372 (2018).

  • Bonham, L. W. et al. Protein network analysis reveals selectively vulnerable regions and biological processes in FTD. Neurol Genet 4, e266 (2018).

  • Nguyen, A. D. et al. Progranulin in the hematopoietic compartment protects mice from atherosclerosis. Atherosclerosis 277, 145–154 (2018).

  • Geier, E. G. et al. Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathol 526, 68–18 (2018).

  • Woollacott, I. O. C. et al. Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup. Alzheimers Res Ther 10, 79 (2018).

  • Woollacott, I. O. C. et al. Pathological correlates of white matter hyperintensities in a case of progranulin mutation associated frontotemporal dementia. Neurocase 2, 1–9 (2018).

  • Gan, L. et al. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci 21, 1300–1309 (2018).

  • Ferguson, S. M. Neuronal lysosomes. Neuroscience Letters (2018). 

  • Sturm, V. E. et al. Network Architecture Underlying Basal Autonomic Outflow: Evidence from Frontotemporal Dementia. J. Neurosci 38, 8943–8955 (2018).

  • Arrant, A. E. et al. Partial Tmem106b reduction does not correct abnormalities due to progranulin haploinsufficiency. Mol Neurodegeneration 13, 32 (2018).

  • Nicholson, A. M. et al. Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Acta Neuropathol Commun 6, 42 (2018).

  • Wang, C. et al. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Cur Op Neurobiol 48, 52–58 (2018).

  • Jiskoot, L. C. et al. Presymptomatic white matter integrity loss in familial frontotemporal dementia in the GENFI cohort: A cross-sectional diffusion tensor imaging study. Ann Clin Transl Neurol 5, 1025–1036 (2018)

  • Fumagalli, G. G. et al. Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales. Alzheimers Res Ther 10, 46 (2018).

  • Cooper, Y. A. et al. Progranulin levels in blood in Alzheimer's disease and mild cognitive impairment. Ann Clin Transl Neurol 5, 616–629 (2018).

  • Pottier et al. Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol. (2018).

  • Nguyen et al. Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. PNAS. (2018).

  • Arrant et al. Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis. J. Neurosci (2018).

  • Galimberti, D. et al. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobio Aging (2018).  

 2017

  • Evers BM et al. Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency. Cell Rep. 2017 Sep 12;20(11):2565-2574. 

  • Perry, D. C. et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain (2017).

  • Seeley, W. W. Mapping Neurodegenerative Disease Onset and Progression. Cold Spring Harb Perspect Biol. (2017).

  • Holler, C. J. et al. Intracellular Proteolysis of Progranulin Generates Stable, Lysosomal Granulins that Are Haploinsufficient in Patients with Frontotemporal Dementia Caused by GRN Mutations. eNeuro (2017).

  • She, A. et al. Selectivity and Kinetic Requirements of HDAC Inhibitors as Progranulin Enhancers for Treating Frontotemporal Dementia. Cell Chem Biol 24, 892–906.e5 (2017).

  • van de Sluis, B. et al. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1. Curr Opin Lipidol 28, 241–247 (2017)

  • Meeter, L. H. et al. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 13, 406–419 (2017).

  • Zhou, X. et al. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat Commun 8, 15277 (2017).

  • Cheng, C. et al. Highly Expandable Human iPS Cell-Derived Neural Progenitor Cells (NPC) and Neurons for Central Nervous System Disease Modeling and High-Throughput Screening. Curr Protoc Hum Genet 92, 21.8.1–21.8.21 (2017).

  • Arrant, A. E. et al. Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia. Brain (2017).

  • Ward, M. E. et al. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Trans Med (2017).

  • Krabbe, G. et al. Microglial NFkB-TNFalpha hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. PNAS 114, 5029–5034 (2017).

  • Wasser, C. R. & Herz, J. Reelin: Neurodevelopmental Architect and Homeostatic Regulator of Excitatory Synapses. JBC 292, 1330–1338 (2017).

  • Kao, A. W. et al. Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci 31, 1245 (2017).

  • Mason, A. R. et al. The Receptor-Interacting Serine/Threonine Protein Kinase 1 (Ripk1) Regulates Progranulin Levels. JBC (2017).

  • Spinelli, E. G. et al. Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol. (2017).

  • Amick, J. & Ferguson, S. M. C9orf72: At the intersection of lysosome cell biology and neurodegenerative disease. Traffic (2017). 

2016

  • Miller, Z. A. et al. Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: Completing the picture. Neurol Neuroimmunol Neuroinflamm 3, e301 (2016).

  • Amick, J., et al. C9orf72 binds SMCR8, localizes to lysosomes and regulates mTORC1 signaling. Mol. Biol. Cell (2016).

  • Nicholson, A. M. & Rademakers, R. What we know about TMEM106B in neurodegeneration. Acta Neuropathol 1–13 (2016).

  • Ranasinghe, K. G. et al. Distinct Subtypes of Behavioral Variant Frontotemporal Dementia Based on Patterns of Network Degeneration. JAMA Neurol (2016).

  • Santos-Santos, M. et al. Features of Patients With Nonfluent/Agrammatic Primary Progressive Aphasia With Underlying Progressive Supranuclear Palsy Pathology or Corticobasal Degeneration. JAMA Neurol. 73:733-742 (2016).

  • Nicholson, A. M. et al. Prosaposin is a regulator of progranulin levels and oligomerization. Nat Commun. 7, 11992 (2016).

  • Arrant, A. et al. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test. Genes Brain Behav (2016).
  • Lui, H et al. Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell 165, 921–935 (2016).
  • Tsai, R. M. & Boxer, A. L. Therapy and clinical trials in frontotemporal dementia: past, present, and future. J Neurochem. (2016).
  • Wasser, C. R. & Herz, J. Splicing therapeutics for Alzheimer's disease. EMBO Mol Med 8, 308–310 (2016).
  • Pottier, C et al. Genetics of FTLD: Overview and what else we can expect from genetic studies. J Neurochem (2016)
  • Almeida, S. et al. Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients. Neurobiol Aging (2016).

2015

  • Minami, S. S. et al. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with ?7 nicotinic acetylcholine receptor agonists. Biochemical Pharmacology (2015).
  • Lee, S. & Huang, E. J. Modeling ALS and FTD with iPSC-derived neurons. Brain Research (2015)
  • Arrant, A. E. et al. Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice. eNeuro 2, (2015).
  • Kao, P. F. et al. Detection of TDP-43 oligomers in frontotemporal lobar degeneration-TDP. Ann Neurol. (2015).
  • Ossenkoppele, R. et al. The behavioural/dysexecutive variant of Alzheimer's disease: clinical, neuroimaging and pathological features. Brain awv191 (2015).
  • Gowrishankar, S. et al. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques. PNAS (2015).
  • Salazar, D. A. et al. The Progranulin Cleavage Products, Granulins, Exacerbate TDP-43 Toxicity and Increase TDP-43 Levels. J. Neurosci 35, 9315–9328 (2015).
  • Ferguson, S. M. Beyond indigestion: emerging roles for lysosome-based signaling in human disease. Current Opinion in Cell Biology 35, 59–68 (2015).
  • Villeneuve, S. et al. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain 138, 2020–2033 (2015).
  • Cho, S.-H. et al. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1?. J. Neurosci 35, 807–818 (2015).

2014

  • Minami, S. S. et al. Progranulin protects against amyloid ? deposition and toxicity in Alzheimer's disease mouse models. Nat Med (2014).
  • Sephton, C. F. et al. Activity-dependent FUS dysregulation disrupts synaptic homeostasis. Proceedings of the National Academy of Sciences 111, E4769–78 (2014).
  • Lee, S. E. et al. Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. Brain awu248 (2014).
  • Warmus, B. A. et al. Tau-mediated NMDA receptor impairment underlies dysfunction of a selectively vulnerable network in a mouse model of frontotemporal dementia. J Neurosci 34, 16482–16495 (2014).
  • van Blitterswijk, M. et al. Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene. Mol Neurodegeneration 9, 38 (2014).
  • Ward, M. E. et al. Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. Journal of Experimental Medicine 177, 311 (2014)
  • Ferrari, R. et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13, 686–699 (2014).
  • Nicholson, A. M. et al. Progranulin protein levels are differently regulated in plasma and CSF. Neurology (2014)
  • van Blitterswijk et al. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol (2014) 

2013

  • Scherling et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol. (2013) pp.
  • Lee et al. Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Human Molecular Genetics (2013) pp.
  • Perry and Miller. Frontotemporal dementia. Semin Neurol (2013) vol. 33 (4) pp. 336-41
  • Ravenscroft et al. Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS. Neurobiol Aging (2013) vol. 34 (9) pp. 2235.e11-3
  • van Blitterswijk et al. C9ORF72 repeat expansions in cases with previously identified pathogenic mutations. Neurology (2013) vol. 81 (15) pp. 1332-41
  • Judy et al. A shift to organismal stress resistance in programmed cell death mutants. PLoS Genet (2013) vol. 9 (9) pp. e1003714
  • Nguyen et al. Progranulin: at the interface of neurodegenerative and metabolic diseases. Trends Endocrinol Metab (2013)
  • Almeida et al. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol (2013)
  • Nicholson et al. TMEM106B p.T185S regulates TMEM106B protein levels: implications for frontotemporal dementia. J Neurochem (2013)
  • Chen et al. Progranulin Does Not Bind Tumor Necrosis Factor (TNF) Receptors and Is Not a Direct Regulator of TNF-Dependent Signaling or Bioactivity in Immune or Neuronal Cells. J Neurosci (2013) vol. 33 (21) pp. 9202-9213
  • Miller et al. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatr (2013)
  • Filiano et al. Dissociation of Frontotemporal Dementia-Related Deficits and Neuroinflammation in Progranulin Haploinsufficient Mice. J Neurosci  vol. 33 (12) pp. 5352-536 (2013)
  • Nguyen et al. Secreted progranulin is a homodimer and is not a component of high-density lipoproteins (HDL). J Biol Chem (2013)
  • Halabi et al. Patterns of striatal degeneration in frontotemporal dementia. Alzheimer disease and associated disorders vol. 27 (1) pp. 74-83 (2013)

2012

  • Blitterswijk et al. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Current Opinion in Neurology. vol. 25 (6) pp. 689-700 (2012)
  • Henry et al. Neuropsychological, behavioral, and anatomical evolution in right temporal variant frontotemporal dementia: A longitudinal and post-mortem single case analysis. Neurocase (2012)
  • Rutherford et al. TMEM106B risk variant is implicated in the pathologic presentation of Alzheimer disease. Neurology vol. 79 (7) pp. 717-8 (2012)
  • Roberson, E. Mouse models of frontotemporal dementia. Ann Neurol. vol. 72 (6) pp. 837-49 (2012)
  • Armakola et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nature Genetics vol 44(12):1302-9 (2012)
  • Almeida et al. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects. Cell Rep vol 2(4):789-98 (2012)
  • Martens et al. Progranulin deficiency promotes neuroinflammation and neuron loss in toxin-induced CNS injury. JCI. vol 122(11):3955-9 (2012)
  • Sephton et al. TDP-43 in central nervous system development and function: clues to TDP-43-associated neurodegeneration. J. Biol Chem vol. 393 (7) pp. 589-94 (2012)
  • Seeley et al. Frontotemporal Dementia: What Can the Behavioral Variant Teach Us about Human Brain Organization? Neuroscientist vol. 18 (4) pp. 373-85 (2012)
  • Rademakers R et al. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol vol. 8 (8) pp. 423-34 (2012)
  • Sha et al. Frontotemporal dementia due to C9ORF72 mutations: Clinical and imaging features. Neurology vol. 79 (10) pp. 1002-11 (2012)
  • Zhou et al.  Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron vol. 73 (6) pp. 1216-27 (2012)
  • Rutherford et al. TMEM106B risk variant is implicated in the pathologic presentation of Alzheimer disease. Neurology vol. 79 (7) pp. 717-8 (2012)
  • Dries et al. Extracting ?-amyloid from Alzheimer's disease. Proc Natl Acad Sci USA vol. 109 (9) pp. 3199-200 (2012)
  • Cenik et al. Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J Biol Chem vol.  287 (39) pp. 32298-32306 (2012)
  • Dewey et al. TDP-43 aggregation in neurodegeneration: Are stress granules the key? Brain Res (2012).

2011

  • Rabinovici et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology (2011).
  • Gozal et al. Aberrant Septin 11 is Associated with Sporadic Frontotemporal Lobar Degeneration. Mol Neurodegener (2011).
  • Lee et al. Clinical characterization of bvFTD due to FUS neuropathology. Neurocase (2011).
  • Kocerha et al. Altered microRNA expressionin frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations. BMC Genomics (2011).
  • Almeida et al. Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disultide isomerase family proteins. PLoS One (2011).
  • Wexler et al. Genome-wide analysis of the Wnt1 transcriptional network implicates neurodegenerative pathways. Science Signaling (2011).
  • Rosen et al. Functional Genomic Analyses Identify Pathways Dysregulated by Progranulin Deficiency. Neuron (2011).
  • Nicholson et al. Human genetics as a tool to identify progranulin regulators. J Mol Neurosci (2011).
  • Cho et al. CSCR1 modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimers disease. J Biol Chem (2011).
  • Finch et al. TMEM106B regulates progranulin leels and the penetrance of frontotemporal lobar degeneration in GRN mutation carriers. Neurology (2011).
  • Cenik et al. SAHA (Vorinostat) upregulates progranulin transcription: A rational therapeutic approach to frontotemporal dementia. JBC (2011).
  • Kao et al. A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proc Natl Acad Sci USA (2011).

2010

  • Rohrer et al. TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology (2010).
  • Dewey et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol (2010).
  • Carrasquillo et al. Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Human Genet (2010).
  • Sephton et al. Identification of neuronal RNA targets of TDP-43-containing Ribonucleoprotein complexes. J Biol Chem (2010).

  • Chen et al. ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci USA.  (2010). 107(26):12011-16
  • Forster et al. Emerging topics in Reelin function. European Journal of Neuroscience, (2010). Vol. 31: 1511–18.
  • Sephton et al. TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem (2010). 285(9):6826-34. 
  • Jiao et al. MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS ONE (2010). vol. 5 (5) pp. e10551.
  • Barmada et al. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associate with familial amyotrophic lateral sclerosis. J. Neurosci (2010). 13:639-649
  • Barmada et al. Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease associated pathways. Neursci. Rev (2010). 21: 251-272

2008-9

  • Daub et al. High-content screening of primary neurons: ready for prime time. Curr Opin Neurobiol (2009). 19(5):537-43.
  • Coppola et al. Gene Expression Study on Peripheral Blood Identifies Progranulin Mutations. Annals of Neurology (2008). 64(1):92-96